Alteration of substrate specificities of thermophilic α/β hydrolases through domain swapping and domain interface optimization.

نویسندگان

  • Xiaoli Zhou
  • Honglei Wang
  • Yuhang Zhang
  • Le Gao
  • Yan Feng
چکیده

Protein domain swapping is an efficient way in protein functional evolution in vivo and also has been proved to be an effective strategy to modify the function of the multi-domain proteins in vitro. To explore the potentials of domain swapping for alteration of the enzyme substrate specificities and the structure-function relationship of the homologous proteins, here we constructed two chimeras from a pair of thermophilic members of the α/β hydrolase superfamily by grafting their functional domains to the conserved α/β hydrolase fold domain: a carboxylesterase from Archaeoglobus fulgidus (AFEST) and an acylpeptide hydrolase from Aeropyrum pernix K1 (apAPH) and explored their activities on hydrolyze p-nitrophenyl esters (pNP) with different acyl chain lengths. We took two approaches to reduce the crossover disruptions when creating the chimeras: chose the residue which involved in the least contacts as the splicing site and optimized the newly formed domain interfaces of the chimeras by site-directed mutations. Characterizations of AAM7 and PAR showed that these chimeras inherited the thermophilic property of both parents. In the aspect of substrate specificity, AAM7 and PAR showed highest activity towards short chain length substrate pNPC4 and middle chain length substrate pNPC8, similar to parent AFEST and apAPH, respectively. These results suggested that the substrate-binding domain is the dominant factor on enzyme substrate specificity, and the optimization of the newly formed domain interface is an important guarantee for successful domain swapping of proteins with low-sequence homology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monoclonal antibodies reveal the alteration of the rhodocetin structure upon α2β1 integrin binding.

The α2β1 antagonist rhodocetin from Calloselasma rhodostoma is a heterotetrameric CLRP (C-type lectin-related protein) consisting of four distinct chains, α, β, γ and δ. Via their characteristic domain-swapping loops, the individual chains form two subunits, αβ and γδ. To distinguish the four chains which share similar molecular masses and high sequence homologies, we generated 11 mAbs (monoclo...

متن کامل

Role of the NC-Loop in Catalytic Activity and Stability in Lipase from Fervidobacterium changbaicum

Flexible NC-loops between the catalytic domain and the cap domain of the α/β hydrolase fold enzymes show remarkable diversity in length, sequence, and configuration. Recent investigations have suggested that the NC-loop might be involved in catalysis and substrate recognition in many enzymes from the α/β hydrolase fold superfamily. To foster a deep understanding of its role in catalysis, stabil...

متن کامل

Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode

Streptonigrin methylesterase A (StnA) is one of the tailoring enzymes that modify the aminoquinone skeleton in the biosynthesis pathway of Streptomyces species. Although StnA has no significant sequence homology with the reported α/β-fold hydrolases, it shows typical hydrolytic activity in vivo and in vitro. In order to reveal its functional characteristics, the crystal structures of the seleno...

متن کامل

Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase

BACKGROUND Domain fusion is limited at enzyme one terminus. The issue was explored by swapping a mesophilic Aspergillus niger GH11 xylanase (Xyn) with a hyper-thermophilic Thermotoga maritima glucanase (Glu) to construct two chimeras, Xyn-Glu and Glu-Xyn, with an intention to create thermostable xylanase containing glucanase activity. RESULTS When expressed in E. coli BL21(DE3), the two chime...

متن کامل

Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain.

A gene encoding a special thermophilic multifunctional amylase OPMA-N was cloned from Bacillus sp. ZW2531-1. OPMA-N has an additional 124-residue N-terminal domain compared with typical amylases and forms a relatively independent domain with a β-pleated sheet and random coil structure. Here we reported an unusual substrate and product specificities of OPMA-N and the impact of the additional N-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biochimica et biophysica Sinica

دوره 44 12  شماره 

صفحات  -

تاریخ انتشار 2012